18禁黄无码免费网站高潮丨国产av天堂无码一区二区三区丨中国猛少妇色xxxxx丨无码网站天天爽免费看视频丨97国产精品人妻无码久久久

撥號18861759551

你的位置:首頁 > 技術文章 > 使用塑料混合非球面透鏡的優(yōu)點

技術文章

使用塑料混合非球面透鏡的優(yōu)點

技術文章

Advantages of Using Plastic Hybrid Aspheric Lenses

TECHSPEC® Plastic Hybrid Aspheric Lenses are low cost optical components that lack both spherical and chromatic aberrations. These aspheric lenses provide optical designers with unique, single element solutions for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources. These aspheric lenses consist of a diffractive surface that has been added to a molded aspheric lens. The aspheric lens eliminates all spherical aberration, while the diffractive surface has a net effect of introducing negative dispersion – when properly tuned to the refractive index and wavelength design of the lens, chromatic aberration is eliminated as well.

 

Spherical and Chromatic Aberrations

There are two major forms of axial optical aberrations inherent in common optical lenses: spherical aberration and chromatic aberration. Spherical aberration is an inherent characteristic of any lens whose surface is a section of a sphere. Light originating from the same object point comes to a focus at slightly different points (P and P’), depending on whether the rays pass through the center of the lens or the periphery (Figure 1).

Figure 1: Spherical Aberration in a Single Positive Lens

 

igure 2.1: Transverse Chromatic Aberration of a Single Positive Lens

 

Figure 2.2: Longitudinal Chromatic Aberration of a Single Positive Lens

 

Chromatic aberration results from material dispersion. Because different colors of light refract by different amounts, an image point formed by light of one color does not coincide with the corresponding image point formed by light of a different color (Figures 2.1 and 2.2).

 

Important Equations

Spherical aberration is typically eliminated by substituting an aspherical surface for the more common spherical surface. The surface profile (sag) is given by Equation 1:

Where

Z = sag of surface parallel to the optical axis

s = radial distance from the optical axis

C = curvature, inverse of radius

k = conic constant

A4, A6, A8 = 4th, 6th, 8th… order aspheric terms

 

However, this does not correct chromatic aberration. Therefore, for a monochromatic light source, the aspheric surface will provide diffraction limited focusing at a single wavelength, but will suffer a large spot size over a broader wavelength.

 

A diffractive surface will correct the spherical aberration, as shown in Equation 2.

Where
Y = radial position from center of lens (for instance, if 0 is the center of the lens, 12.5mm will be the edge of a 25mm diameter lens, etc.)
nd = index of refraction of the material at 587.6nm
Step Height = λ/nd-1
λ = the wavelength of interest

By combining the two features onto a single element, a component that eliminates both chromatic and spherical aberration is created. That surface is described simply as the sum of the Zasph and Zdiff coefficients.

For tips on modeling diffractives in Zemax and Code V, visit the Optics Realm blog.

 

Customer Benefits

Optical designers often need to focus light at very short distances, or collect and collimate as much light as possible from very divergent light sources. Basic optical principles dictate that a high numerical aperture optical lens is required for either of these scenarios. A high numerical aperture optical lens will typically have a focal length equal to or shorter than the clear aperture of the optical system, allowing the designer to maintain as compact of an optical train as possible.

For example, an optical designer has multiple options for achieving a focal length that is equal to his clear aperture (a scenario known as an F/1 lens, or a lens with a numerical aperture of 0.50). The simplest option is to use a standard plano-convex lens, available from a number of distributors. Spot diagram, chromatic focal shift graph, polychromatic diffraction MTF, and transverse ray fan plot for the wavelength range of 486 - 656nm are provided for #45-097 25mm Diameter x 25mm FL PCX lens.

 

PCX Lens

Figure 3.1: Spot Diagram for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.2: Chromatic Focal Shift Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.3: Polychromatic Diffraction MTF Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.4: Transverse Ray Fan Plot for #45-097 25mm Dia. x 25mm FL PCX Lens

 

For improved performance, the optical designer could consider an achromatic lens of the same form factor, for example #65-553 25mm Diameter x 25mm Focal Length Achromatic Lens. Again, the same characteristics are shown over the same wavelength range. A 74% decrease in spot size with a 73% decrease in chromatic focal shift can be seen, yielding an MTF of 13 lp/mm at 40% contrast, a substantial gain versus the aforementioned singlet lens.

Figure 4.1: pot Diagram for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.2: Chromatic Focal Shift Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.3: Polychromatic Diffraction MTF Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.4: Transverse Ray Fan Plot for #65-553 25mm Dia. x 25mm FL Achromatic Lens

For maximum performance, the optical designer should choose a plastic hybrid aspheric lens. In this scenario, the exact same form factor and wavelength range are used, this time with #65-992 25mm Diameter x 25mm FL Hybrid Aspheric Lens. As shown, this lens provides diffraction limited focusing performance, yielding the optimum performance for the designer.

 

Plastic Hybrid Lens

Figure 5.1: Spot Diagram for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.2: Chromatic Focal Shift Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.3: Polychromatic Diffraction MTF Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.4: Transverse Ray Fan Plot for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Comparing the spot diagrams, chromatic focal shift graphs, polychromatic diffraction MTFs, and transverse ray fan plots of a plano-convex (PCX) lens, achromatic lens, and hybrid aspheric lens, it is easy to see the advantages of using plastic hybrid aspheric lenses for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources.

 

Selection Guide

Edmund Optics® TECHSPEC® Plastic Aspheres and TECHSPEC® Plastic Hybrid Aspheres families are both manufactured utilizing Zeon Chemical’s Zeonex E48R material. Zeonex materials feature high transparency, low fluorescence, low birefrengence, low water absorption, and high heat and chemical resistance, making it a superior material vs. other commonly available plastics. Zeonex is a Cylco Olefin Polymer (COP) material.

Plastic Materials Selection Guide

Property

Glass

Zeonex E48R

PMMA

Polycarbonate

Polystyrene

Arton®

Transmission

Excellent

Excellent

Excellent

Good

Very Good

Excellent

Low Refractive Index

Excellent

Excellent

Excellent

Poor

Poor

Good

Low Birefringence

Excellent

Excellent

Excellent

Poor

Poor

Excellent

Low Water Absorption

Excellent

Excellent

Poor

Good

Excellent

Excellent

Impact Resistance

Poor

Good

Good

Excellent

Good

Excellent

Moldability

Fair

Excellent

Good

Excellent

Excellent

Good

Heat Resistance

Excellent

Good

Poor

Good

Poor

Very Good

Coating Adhesion

Excellent

Good

Fair

Fair

Fair

Good

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權(quán)所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
主站蜘蛛池模板: 日本无卡码高清免费v| 天美传媒精品| 国产手机在线国内精品| 国产成人涩涩涩视频在线观看 | 国产亚洲综合欧美视频| 午夜精品久久久久久99热| 国产无遮挡无码很黄很污很刺激| 国内自拍真实伦在线视频| 国产精品免费麻豆入口| 国产精品女同久久久久电影院| 99久久精品午夜一区二区| 中国少妇内射xxxxx-百度| 97色精品视频在线观看| 亚洲国产成人久久综合人| 国产乱辈通伦影片在线播放亚洲| 久久国产精品99久久久久久口爆| 乌克兰少妇videos高潮| 日本熟妇乱人伦a片免费高清| 亚洲综合色婷婷七月丁香| 国产最爽的av片在线观看| 国产av一区二区精品凹凸| 久久久久99精品成人片试看| 2021国产精品午夜久久| 中国少妇内射xxxxx-百度| 午夜a理论片在线播放| 成人乱码一区二区三区av66| 狠狠做五月深爱婷婷| 真实乱子伦露脸自拍| 麻花豆传媒剧国产免费mv观看 | 欧美人与动牲交zooz| 国产成人a在线观看网站站 | 加勒比无码一区二区三区| 四虎永久在线精品无码视频| 一区二区三区鲁丝不卡| 国产高清视频一区三区| 国产精品一区二区在线观看99| 亚洲精品乱码久久久久久自慰| 亚洲乱码日产精品bd在线看| 久久99精品久久久久久清纯| 伊人中文在线最新版天堂| 国产又黄又硬又粗|